Hemolymph circulation in insect sensory appendages: functional mechanics of antennal accessory pulsatile organs (auxiliary hearts) in the mosquito Anopheles gambiae.

نویسندگان

  • Sushma Boppana
  • Julián F Hillyer
چکیده

Mosquito antennae provide sensory input that modulates host-seeking, mating and oviposition behaviors. Thus, mosquitoes must ensure the efficient transport of molecules into and out of these appendages. To accomplish this, mosquitoes and other insects have evolved antennal accessory pulsatile organs (APOs) that drive hemolymph into the antennal space. This study characterizes the structural mechanics of hemolymph propulsion throughout the antennae of Anopheles gambiae. Using intravital video imaging, we show that mosquitoes possess paired antennal APOs that are located on each side of the head's dorsal midline. They are situated between the frons and the vertex in an area that is dorsal to the antenna but ventral to the medial-most region of the compound eyes. Antennal APOs contract in synchrony at 1 Hz, which is 45% slower than the heart. By means of histology and intravital imaging, we show that each antennal APO propels hemolymph into the antenna through an antennal vessel that traverses the length of the appendage and has an effective diameter of 1-2 μm. When hemolymph reaches the end of the appendage, it is discharged into the antennal hemocoel and returns to the head. Because a narrow vessel empties into a larger cavity, hemolymph travels up the antenna at 0.2 mm s(-1) but reduces its velocity by 75% as it returns to the head. Finally, treatment of mosquitoes with the anesthetic agent FlyNap (triethylamine) increases both antennal APO and heart contraction rates. In summary, this study presents a comprehensive functional characterization of circulatory physiology in the mosquito antennae.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hemolymph circulation in insect flight appendages: physiology of the wing heart and circulatory flow in the wings of the mosquito Anopheles gambiae.

The wings of insects are composed of membranes supported by interconnected veins. Within these veins are epithelial cells, nerves and tracheae, and their maintenance requires the flow of hemolymph. For this purpose, insects employ accessory pulsatile organs (auxiliary hearts) that circulate hemolymph throughout the wings. Here, we used correlative approaches to determine the functional mechanic...

متن کامل

Comparative structural and functional analysis of the larval and adult dorsal vessel and its role in hemolymph circulation in the mosquito Anopheles gambiae.

Hemolymph circulation in insects is driven primarily by the contractile action of a dorsal vessel, which is divided into an abdominal heart and a thoracic aorta. As holometabolous insects, mosquitoes undergo striking morphological and physiological changes during metamorphosis. This study presents a comprehensive structural and functional analysis of the larval and adult dorsal vessel in the ma...

متن کامل

A functional role for Anopheles gambiae Arrestin1 in olfactory signal transduction.

Insect sensory arrestins act to desensitize visual and olfactory signal transduction pathways, as evidenced by the phenotypic effects of mutations in the genes encoding both Arr1 and Arr2 in Drosophila melanogaster. To assess whether such arrestins play similar roles in other, more medically relevant dipterans, we examined the ability of Anopheles gambiae sensory arrestin homologs AgArr1 and Ag...

متن کامل

A serine protease homolog negatively regulates TEP1 consumption in systemic infections of the malaria vector Anopheles gambiae.

Clip domain serine protease homologs are widely distributed in insect genomes and play important roles in regulating insect immune responses, yet their exact functions remain poorly understood. Here, we show that CLIPA2, a clip domain serine protease homolog of Anopheles gambiae, regulates the consumption of the mosquito complement-like protein TEP1 during systemic bacterial infections. We prov...

متن کامل

Organization of olfactory centres in the malaria mosquito Anopheles gambiae

Mosquitoes are vectors for multiple infectious human diseases and use a variety of sensory cues (olfactory, temperature, humidity and visual) to locate a human host. A comprehensive understanding of the circuitry underlying sensory signalling in the mosquito brain is lacking. Here we used the Q-system of binary gene expression to develop transgenic lines of Anopheles gambiae in which olfactory ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 217 Pt 17  شماره 

صفحات  -

تاریخ انتشار 2014